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'\ ABSTRACT

We consider _the nonlinear abstract Volterra equation of convolution

iy NS

v) u(t) + b/* Ault) » u + b * g(t) t

0

>
—

where A is m<accretive in a Banach space X , b is a given real kernel,

"\ Boundedness and asymptotic properties of the solutions are established
under the assumption that the kernel satisfies certain natural positivity

conditions. — +u }..3-
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Significance and Explanation

cesed

——

“An important property of linear and nonlinear diffusion equations is that

the solutions of such equations obey a ’;axim principl:r. In particular,

if the initial data and the forcing terms are nonnegative, then the solution is

nonnegative,

Equation

) stated in the Abstract is a generalization of the evolution
equation

e s e i e

{DE)

NS

o Lo

uf{0) = u,

B R s

“or example, if Au(x) = -Au(x) with Dirichlet or Neumann conditions on a

boun domain of mn

« then equation (DE) is the standard heat equation and

1

solution u is nonnegative whenever u, and g are nonnegative.

%

D The Volterra equation (V) is an abstraction of a mathematical model for

nonlinear heat flow in a material with ’;uory“/. The Xernel b in (V) can

be expressed in terms of the physically meaningful heat flux and internal

energy relaxation functions.“:}

(-m-v»., A A ‘:‘ CMM
1

n this paper we-eemsider equation (V) for a class of kernels b, which

insure the positivity of the solution operator. For this class of kernels we

use techniques of nonlinear functional analysis establish boundedness and

asymptotic behaviour of solutions of (V) as t + A ., We show that in the

special case b ¢ t.'1 (0,=) the memory induces a damp effect on solutions ;
#
" of (V).
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“he responsibility for the wording and views s
summary lies with MRC, and not with the author of this report.
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ON ABSTRACT VOLTERRA EQUATIONS WITH
KERNELS HAVING A POSITIVE RESOLVENT

Ph. Clément

Introduction
Let X be a real Banach space with norm Jl+l. Let A be a m-accretive

operator in X , (3], i.e. for every ) » 0 , J, 1= (1 + \A)-I is a non-

expansive map which is everywhere defined on X . We consider the following
Volterra equation of convolution type:

(1.1) u(t) + b * Au(t) » f£(t) t>0

where b is a given real kernel, f is a given function with values in X

and b * Au(t) = ft b(t-s)Au(s)ds. Since for every ) > 0 , the Yosida approxi-
mation of A , AT tm \-l(!-Jl) is Lipschitz continuous, the equation

(1.1), ult) + b * Ault) = £(t) t>0

possesses a unique solution u_ ¢ C([0,T];X) {if b ¢ tho.T] and f ¢ C([0,T];X),

A
T >0 . In (4], Crandall and Nohel have proved that if the assumption
bewlo,71, (o) >0, B e Bvio,T
(H1)
£ cw ol , £00) « BT
is satisfied, then there exists u ¢ C([0,T):X) such that lim u, = u in

by
b+ 0
Cl{0,T):X); u is called the generalized solution of (1.i). Note that if (H1)

is satisfied, then there exists a unique u_ ¢ D(A) and a unique g« Ll(o,?zx)

)
such that
(1.2) f(t)-uoo»b'q(t) Ot «<T.
Indeed e £(0) and g is the unique solution of the equation
b(O)g(t) + B * g(t) = £(¢) o<ter,
(where + = d/at). Conversely, if b ¢ W' {0,171, b(0) >0, B ¢ BV[0,7) and

u, € DA, g ¢ LI(O.?.X), then f given by (1.2) satisfies assumption (Hl).

Research partially sponsored by Technische Hogeschool, Delft, The Netherlands,
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The proof in [4) of the existence of a generalized solution of (1.1), shows

that (1.1) is closely related to the equation

alt) + Ault) » g(t) OctceT b
(1.3)

u(0) = ¥, |
which is (1.1) with b : 1. It is known (1], that if u, and u, are the gener-

alized solutions of (1.3) corresponding to the data u and 9y09,0 then ]

0,1’ Y0,2
the following estimate, which implies continuous dependence of solutions of (1.3) e

holds:

(1.4) flu, (£) = u, (O < v i +Db*ig, -g,lt)

0,1 = Y,2
on [0,T], with b # 1 . In this paper we consider a class of kernels satisfying
(Hl), containing the kernel b : 1 , for which the estimate (1.4) still holds.
Such class of kernels was introduced in (2, nsum:giom 14, H5]. Moreover, we
prove that if the kernel b belongs to this class and is in Ll(o.-). then the
generalized solution of (1.1) converges strongly to a limit wu_ provided that g
itself is bounded and converges to a limit g9, -+ If by Ll(o.-). it is well-
known that u may not converge to a limit. (Take X = l? with the Euclidean

0
analogous result in the case b / 1.1(0.-) and A = wI + Blw > 0, B m-accretive).

norm, A := {o -l}' L 2L, gm0, u°¢o>. Work is in progress on an

In order to state our main assumption on the kernel b we need the following
definitions., For b ¢ Ll (0,T), let us denote by r(b) the resolvent of b , i.e.
the unique solution in Ll (0,T) of the equation
(1.5) r+b*r=5>% Oct<T,
and by s(b), the unique solution in AC(0,T] of the equation

(1.6) s+b*sga=1l 0Lt<T,




Our basic assumption on the kernel b is
f
| For every 1 >0, x(Ab) >0 a.e. on [0,T)

(H2)
and s(Ab) >0 on (0O,T]).

It is known [7), (5], (2] that if Db ¢ LI(O,T), is positive, nonincreasing and
if log b is convex on (0,T), then b satisfies (H2). Observe that if b is
completely monotonic on (0,«), then log b is convex {7]. Observe also that
(H2) implies b > 0. In order to avoid trivialities we shall assume that b
is not identically equal to 0 . 1In connection with this class of kernels we
mention the following "positivity" result;

Theorem [2; Theorem 5] let b,f satisfy (Hl) and (H2) on [0,T] with

f=u,+b*g. Let P be a closed convex cone in X . If J,(P) c P for

-

every X >0, u, € P and g(t) ¢ P a.e. on [0,7], then u the generalized

solution of (1.1) satisfies u(t) ¢ P, t ¢ [0,T].

2. Statement of results

We first give the generalization of (1.4) to (1.1) with kernels b satisfying
(H2).

Theorem 1. let b, fl,tz satisfy (Hl) and (H2) on {fo,T], with ¢

§ " ¥g g "

b ¢ 90 i=1,2, 18t u N, be the corresponding generalized solutions of (1.1)

1

on {0,T]. M
- - - -
(2.1) Hul(t) uztt)l < lno'1 “0,2' + b lq1 qzl (t)
0 <t <T holds.
Our main result concerns the asymptotic behaviour of solutions of (1.1) as t =+ =,

For results in this direction, in the scalar case, but for more general kernels b,
we refer the reader to (6]. 7 |
i
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Theorem 2. Let b,f satisfy (H1) and (H2) on [0,T] for every T > 0, with

f = u, * b*g and b# 0. If Db« LI(O,-), g ¢ L"OR‘,X) and lim g(t) = g
t»w™

exists in X , then

["b(s)as

(2.2) fu(t) - u ll < o, =ull +b*llg-gl(t)
.—r w -
b(s)ds

0

holds for t > 0 , where u is the generalized solution of (1.1) and u =

(1+ 80 u + Bg) with B=[" bls)as.
0 - —— 0

3. Proofs.

In the proofs we shall use the fact that if v ¢ Ll(O,Tyx) satisfies

(3.1) vit) + b * vit) = u, * b * gft) D<t<T

with b ¢ LI(O,T), “0 € X and g ¢ LI(O,T;X) then

(3.2) vit) = l(b)(t)uo + r(b) * g(t) 0<t=<T :
holds. '

Proof of Theorem 1.

We first establish (2.1) with A replaced by A , } > 0 and then we pass

A '
to the limit as ) ¢4 0 . For A >0 , let . o, satisfy
’
- L] f B
(3.3) “i,x + b Axui,l = uo'i + b 9 t ¢ [0,0), L 3,2,
From the definition of AA , we have
(3.4) u + X-lb *u - l-lb * Ju 4+ u +brg, , kw1,
i i, gy 08 Thits R | i

Using (3.2) we get

= "l o -1 .
(3.5) ui'x r(d 'b) uni'x + s8(} b)uo' +ir(h b) *g i=1,2.

i 4/

§. Since J is nonexpansive, (A ’b) and

Next we estimate 'ul.l - “2.1
- 4
A 1b) are nonnegative, we obtain: :
— it » ¥ ) %
(3.6) '“l.x “2,)' <rQd 1b) Iul" “2,1. + s() lb) Huo'1 uo'zl o

(3" lp) o fg, - g0 .

2




We take the convolution of (3.6) with A'lb (which is nonnegative) and we add

(3.6). We have

LA™ e lu  <a e
1,

7 o
(3.7) fu u \ 2 £

1,2 2,A

-1 -1 -1
{r{X b} + 2 b *r(2 b)) * lhxl'A - uzlkﬂ

0,1 " %,2

|
L 3 - -
b * r(d b)) Bql gzn.

+ 80 + A7 * 00" o)

ity o0

1 L wats

Huo 1" Y 2» + b * qu - qzn. The conclusion of Theorem 1 follows by letting
. .

From the definition of r(k‘lb) and s(x-lb), we obtain llu

A-90. %0 0.

Proof of Theorem 2.

As in the proof of Theorem 1, we first prove the result with A replaced
by Ay o A >0 and then we pass to the limit as ) + 0 .

For ) >0 , let u satisfy

b

. -
(3.8) u, + b Axu‘ = u, *B g

From the definition of Al and (3.2) we have:

{(3.9) u, = t(l‘lb) » Jx“x . l(l-lb)uo + At(l-lb) g .

Since A is m-accretive, A1 is also m-accretive and there is a unique U,

satisfying
(3.10) ULt b Alu‘_ =y, +bg,
where b = [. bis)ds.
0
Using again the fact that b ¢ Ll(o;r). we can rewrite (3.10) as
(3.11) ul.ﬁb'hlul.-uoﬁb'QOAb'(9."9)-2\“
where
(3.12) £(t) = [ bls)as
-
and




i i R,
3

.

Let n satisfy

(3.14) ot RS Wi, 3

Then obviously n v, satisfies

e

(3.15) nw, e £ v, .
vsing (3.11), (3.15), (3.2) and the definition of AA we obtain
-1 -1
(3.16) Sy ™ rfd 'b) * unl. + 85X b)uo

?
s a0 g 07 g -9 - 0w, .

Subtracting (3.16) from (3.9) and using the fact that J is nonexpansive,

by
s(0"2a), r(2"1a) are nonnegative, we get:

-1 -1
(.17 Bu, = u < xQ7B) ¢y, = u l o+ Ax07D) * g, - gl + [nfiw,l.

Next we take the convolution of (3.17) with A-l

b (which is nonnegative) and we
add (3.17); we obtain :
-1
(3.18) fu, ~u, F <b*lig-glf+ (In] + » b * !nl)lvxl ;
We claim that n is nonnegative. Indeed n satisfies (3.14) with

£(t) = b - [“bls)ds . Thus n satisfies (3.1) for every T > 0 , with X =R,

b r.placodoby x-lb, u, replaced by b and g replaced by =-il, where
A(t) = 1. From (3.2) we get
(3.19) at) = s 0B - A% r07 b (nar t>0.
By using the identity "
(3.20) s0 ) + [f by (nar = 1 t>0
we have ¢
(3.21) Me) = B x0TI - ar7e) (e t>0. :

The fact that b,) are positive and assumption (H2) imply that n is nonincreasing. /

It remains to prove that 1lim ni(t) > 0 . i

teom™
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From (3.20) and assumption (H2), it follows that s(x-lb) (@) := 1im s(l-]’b) (t)

toew
exists and
(3.22) sO7 )@ =1 - [ 1) (1ar
0
holds.

Letting t go to infinity in (3.19) we get

(3.23) Lm 2 7tn(e) = 807 @725 - [ ro7lb) (mar
tee 0

hence from (3.22), we obtain

(3.24)

lim A“lntt) - 80 20) (e (1 4 ATy Ly

tem
Next we observe that

(3.25) O i DT
Indeed from the definition of s(A_lb) we have

™ te) + a7 2 sa BN (e) =1 .

tLem

But lim n(khlb) (t) exists, 0 < s(Anlb) (t) <1 for every t >0, and

b e t1(0,®, thus (3.25) follows. Consequently 1lim n(t) = 0 and nlt) >0

tew
for every t > 0. Replacing |n| by

n in (3.18) and using (3.14), we obtain:
(3.26)

lluA - ua_l % &lvll +b*lg-gl.

Since b > 0 , using (3.13) we have

(3.27) gt = L 45 A u - Bg .
b b T =

Finally using (3.10), (3.12), (3.26) and (3.27) we get

f' b(s)ds

t
(3.28) fu, (t) = u, ¥ < fluy = u il +b*lg=gJli(t) t>0.

A Aw b(s)ds 0 bl
0

Observe that (3.28) is the conclusion of the theorem with A replaced by A

xl
Since A is m-accretive we have

- “1 -
lim u,_:= 1lim (I 4+ bA,) "(u .+ b g))
A0 " 240 A g =

- -1 e
= lim (I + BA) "(u_+bg) =: u .
140 v i '

-7-

T 1 o A . A

ik b




i Using assumption (Hl), lim u, = u in c([o,T);X), thus (2.2) follows from
! A4 0
(3.28) by letting ) go to O .

Remark . It is clear from the proofs of the theorems that the assumption (Hl)

has been used only to insure that lim u, exists in C([0,T];X), for every T - 0.
1+ 0

Indeed Theorems 1 and 2 are valid for A replaced by Ax y A >0 , if the assump-

tion (Hl) is replaced by the assumption

[ a ¢ Ll(O.T)

(H1') 1
u, € X, g €L 10,71%)

It has been proved in (2, Th. 1(ii), Th. 2(i), Remark 2.3] that under the assump-

tions (H1') and (H2), if A is linear m-accretive with D(A) dense in X that
lim u, exists in Ll(O,T,x). Therefore in the linear case, Theorems 1 and 2 .
Av O

are true with (Hl) replaced by (H1'). Then pointwise inequalities (2.1) and

by

{2.2) have to be replaced by a.e. inequalities.
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